

Product Information

FNNTECH

info@lenntech.com Tel. +31-152-610-900 www.lenntech.com Fax +31-152-616-289

FILMTEC™ Membranes

8" Semiconductor Grade Reverse Osmosis Elements

Ultrapure water specifications and analytical measurement capabilities have advanced to meet the Features exacting needs of microprocessor, semiconductor and other silicon based device manufacturers.

FILMTEC[™] SG30-400/34*i* and SG30LE-440*i* reverse osmosis elements have been developed to meet the requirements of higher overall rejection, higher rejection of lower molecular weight organic compounds and silica and an accelerated TOC rinse down profile. These high surface area elements allow for system design with fewer elements and a lower applied operating pressure, thus optimizing amortization of capital costs while lowering operating cost.

Both elements now come with the unique *iLEC*[™] interlocking endcaps that reduce system operating costs, reduce the risk of o-ring leaks and the generation of small particles that lead to poor water quality, and eliminate the need for lubricants. See form No. 609-00446 for more information on the benefits of *iLEC* interlocking endcaps.

SG30-400/34*i* is intended primarily for polishing use in traditional UPW systems designed for higher pressure operation. It features a 34 mil spacer to lessen the impact of fouling and pressure drop across a vessel, increasing running time between cleaning and enhancing cleaning effectiveness.

SG30LE-440*i* is intended primarily for polishing use in newer UPW equipment where the benefits of lower capital cost and lower energy consumption add value.

Product Specifications

		Active Area	Permeate Flow Rate
Product	Part Number	ft ² (m ²)	gpd (m ³ /d)
SG30-400/34 <i>i</i>	272569	400 (37)	10,200 ¹ (38.6)
SG30LE-440 <i>i</i>	272573	440 (41)	10,000 ² (38)

1. Pure water flow based on the following conditions: 225 psi (1.55 MPa), 77°F (25°C) and 15% recovery.

2. Pure water flow based on the following conditions: 107 psi (0.74 MPa), 77°F (25°C) and 15% recovery.

3. Flow rates for individual elements may vary but will be not more than 15% below the value shown.

4. Product specifications may vary slightly as improvements are implemented.

5. Typical stabilized salt rejection (CI) for individual element is 99.5% under the test conditions of 2,000 ppm NaCl, 225 psi (1.55 MPa) for SG30-400/34 and 150 psi (1.03 MPa) for SG30LE-440; 77°F (25°C), pH 8 and 15% recovery. At lower TDS (<5 ppm), ion rejections are decreased depending on ionic strength, pH and ionic species.

Figure 1		B A	
		Fiberglass Outer Wrap U-Cup Brine Seal	d Cap Brine Permeate
Ма	ximum Feed Flow Rate	Typical Recovery Rate Dimensions – Inches (r	nm)

	Maximum Feed Flow Rate	Typical Recovery Rate	Dimensions – Inches (mm)			
Product	gpm (m³/h)	(%)	А	В	С	D
SG30-400/34 <i>i</i>	85 (19)	15	40.0 (1,016)	40.5 (1,029)	7.9 (201)	1.125 ID (29)
SG30LE-440 <i>i</i>	85 (19)	15	40.0 (1,016)	40.5 (1,029)	7.9 (201)	1.125 ID (29)

1. Typical recovery rate shown is for a single element. Recovery rate is calculated by dividing permeate flow rate by feed flow rate. 1 inch = 25.4 mm2. Refer to FilmTec Design Guidelines for multiple-element systems.

3. SG30-400/34i and SG30LE-440i elements fit nominal 8.0-inch (203 mm) I.D. pressure vessel.

4. SG30LE-440; now has an industry standard 1.125-inch I.D. permeate tube. If required, SG30LE-440; can be connected in series with the old SG30LE-430 (1.5-inch I.D. tube) using interconnector part number 196309.

Operating Limits	 Maximum Opera Maximum Differ pH Range, Con pH Range, Shoi Maximum Feed Free Chlorine T Maximum temperature Refer to Cleaning Gui Under certain conditio oxidation damage is n 	ating Temperatur ating Pressure ential Pressure tinuous Operation t-Term Cleaning Silt Density Inde olerancec for continuous operation delines in specification sn, the presence of free ot covered under warra	re 11 6(11 n ^a 2 (30 min.) ^b 1 x S < on above pH 10 is 95°F (35°C).	13°F (45°C 00 psig (4.1 5 psig (0.1 l - 11 - 13 DI 5 0.1 ppm ts will cause pre g residual free c	MPa) MPa) mature membrane failure. Since	
Organic Rejection Data	Rejection data for organic species are tabulated below. Table 1. Typical organic compounds rejection					
	Organic compound	MW	Rejection (%) SG30-40	00/34 <i>i</i> 1 F	Rejection (%) SG30LE-440 <i>i</i> ²	
	Methanol	32	14	1	13	
	Ethanol	46	50	4	10	
	Acetone	58	68	4	18	
	Isopropanol	60	95		92	
	· ·		, 5 1 psi (1.47 MPa), 25°C, pH 7 and 15%			
			7 psi (0.74 MPa), 25°C, pH 7 and 159			
Important Information Operation	membranes for oper hydraulic shock. For parameters conform can be achieved. Before initiating syst elements, instrumer Please refer to the a 02077) for more infor Avoid any abrupt pro-	ating service and llowing the prope to design specif eem start-up proc at calibration and application inform rmation.	ications so that system w edures, membrane pretre other system checks sho lation literature entitled "S low variations on the spir	lamage due helps ensu vater quality eatment, loa ould be com Start-Up Sec ral elements	e to overfeeding or ure that system operating and productivity goals ading of the membrane upleted. quence" (Form No. 609-	
Guidelines	a gradual change fr Feed pressure sh Cross-flow veloci Permeate obtained	om a standstill to hould be increase ty at set operatin ed from first hour	es to prevent possible m operating state is recom ed gradually over a 30-60 g point should be achieve of operation should be d	mended as) second tim ed graduall	follows:	
General Information	 Keep elements moist at all times after initial wetting. If operating limits and guidelines given in this bulletin are not strictly followed, the limited warranty will be null and void. To prevent biological growth during prolonged system shutdowns, it is recommended that membrane elements be immersed in a preservative solution. The customer is fully responsible for the effects of incompatible chemicals and lubricants on 					
 Avoid static permeate-side backpressure at all times. 						
			not necessarily guarantee the rem omplete system design and on the			
	from one location to another in this document are approp compliance with applicable	and may change with t riate for Customer's use aws and other governm ES ARE GIVEN; ALL IN	er or others is to be inferred. Becat ime, Customer is responsible for d e and for ensuring that Customer's nental enactments. Seller assumes IPLIED WARRANTIES OF MERCH	etermining whet workplace and no obligation or	ther products and the information disposal practices are in	

